H. Morita and T. Nakahara: Pattern mining for historical data analysis by using moea (Chapter 3). Multiobjective Programming and Goal Programming, Theoretical Results and Practical Applications (Lecture Notes in Economics and Mathematical Systems). Barichard, V. and M. Ehrgott. and X. Gandibleux and V. T’Kindt. Eds., Springer-Verlag, pp.135-144, 2009. March.
T. Nakahara and H. Morita: Finding hierarchical patterns in large pos data using historical trees (Chapter 4). Data Mining for Design and Marketing. Ohsawa, Y and K. Yada, Eds., Chapman and Hall, pp.57-79, 2009. January.
査読付き学術雑誌論文
Kosuke Motoki, Takanobu Nakahara, Carlos Velasco, ''Tasting brands: Associations between brand personality and tastes'', Journal of Business Research, 2022.12.
T. Sato, Y. Takano, T. Nakahara, “Investigating consumers’ store-choice behavior via hierarchical variable selection,” Advances in Data Analysis and Classification, Springer, Vol.13, Issue 3, pp.621-639, 2018.
Takeaki Uno, Hiroki Maegawa, Takanobu Nakahara, Yukinobu Hamuro, Ryo Yoshinaka, Makoto Tatsuta, “Micro-clustering by data polishing”, 2017 IEEE International Conference on Big Data (Big Data), Boston, MA, pp. 1012-1018, Dec., 2017.
S. Cheung, Y. Hamuro, J. Mahlich, T. Nakahara, R. Sruamsiri, S. Tsukazawa, ”Drug Utilization of Japanese Patients Diagnosed with Schizophrenia: An Administrative Database Analysis”, Clinical Drug Investigation, Vol. 37, Issue 6, pp.559-569, 2017/6.
T. Sato, Y. Takano, T. Nakahara, “Using Mixed Integer Optimisation to Select Variables for a Store Choice Model,” International Journal of Knowledge Engineering and Soft Data Paradigms, Vol.5, No.2, pp.123–134 , 2016.04.
T. Nakahara, K. Yada, “Analyzing consumers’ shopping behavior using RFID data and pattern mining”, Advances in Data Analysis and Classification, Springer, Vol. 6, Issue 4 (2012), Page 355-365, December.
T. Nakahara, K. Yada, “Evaluation of the Shopping Path to Distinguish Customers Using a RFID Dataset”, International Journal of Organizational and Collective Intelligence, 2(4), 1-14, October-December 2011.
T. Nakahara, ''Why Do We Love Coffee Even Though It Is Bitter?'', In: Meiselwitz G. (eds) Social Computing and Social Media: Experience Design and Social Network Analysis. HCII 2021. Lecture Notes in Computer Science, vol 12774. Springer, Cham. https://doi.org/10.1007/978-3-030-77626-8_30
佐藤俊樹, 高野祐一, 中原孝信, 「整数計画法による変数選択を用いた店舗選択モデル」, 第14回情報技術科学フォーラム (FIT2015) 講演論文集第2分冊 pp. 53–58. 2015.09.17.
T. Nakahara, T. Uno, and Y. Hamuro, “Prediction Model Using Micro-clustering”, Knowledge-Based and Intelligent Information & Engineering Systems 18th Annual Conference, KES-2014 Gdynia, Poland, September 2014 Proceedings, DOI: 10.1016/j.procs.2014.08.231, Volume 35, 2014, pp.1488–1494, 2014.
T. Nakahara, Y. Hamuro, “Detecting topics from Twitter posts during TV program viewing”, MoDAT in conjunction with IEEE ICDM 2013 in Dallas, Texas. DOI: 10.1109/ICDMW.2013.48. December 7, 2013.
T. Nakahara, K. Yada, “Extraction of Customer Potential Value Using Unpurchased Items and In-store Movements”, In proceedings of KES 2011, KNOWLEDGE-BASED AND INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, Lecture Notes in Computer Science, 2011, Volume 6883/2011, DOI: 10.1007/978-3-642-23854-3_31. pp.295-303, September 12-14, 2011. Kaiserslautern, Germany.
M. Kholod, T. Nakahara, H. Azuma, K. Yada, “The Influence of Shopping Path Length on Purchase Behavior in Grocery Store“, In proceedings of KES 2010, KNOWLEDGE-BASED AND INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, Lecture Notes in Computer Science, 2010, Volume 6278/2010, DOI: 10.1007/978-3-642-15393-8_31. pp.273-280, September.
T. Nakahara, T. Uno, K. Yada, ”Extracting Promising Sequential Patterns from RFID Data Using the LCM Sequence”, In proceedings of KES 2010, KNOWLEDGE-BASED AND INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, Lecture Notes in Computer Science, 2010, Volume 6278/2010, DOI: 10.1007/978-3-642-15393-8_28. pp.244-253, September.
H. Morita, T. Nakahara, Y. Hamuro, S. Yamamoto, ”Decision Tree-based Classifier Incorporating Contrast Patterns”, The 13th IEEE International Symposium on Consumer Electronics(ISCE2009), DOI: 10.1109/ISCE.2009.5156927, pp.858-860. May 25-28, 2009, Mielparque-Kyoto, Kyoto, Japan, 2009.
T. Nakahara, H. Morita, “Recommender System for Music CDs Using a Graph Partitioning Method”, In proceedings of KES 2009, Lecture Notes in Computer Science 5712, Springer 2009. pp.259-269, September.
T. Nakahara, H. Morita, “Pattern Mining in POS data using a Historical Tree”, Workshops Proceedings of the 6th IEEE International Conference on Data Mining (ICDM 2006), 18-22 December 2006, Hong Kong, China, IEEE Computer Society, 2006, pp.570-574.
H. Morita, T. Nakahara, “Data mining from photographs using the KeyGraph and genetic algorithms”, Journal of Economics, Business and Law, Vol.7, pp.73-85, 2005.
国際会議
T. Nakahara, Y. Sakuma, K. Yada, M. Wedel, ''The Impact of Checkout Congestion on Purchasing Behavior'', EMAC 2021 Annual conference (Online), May 25th, 2021.
T. Nakahara, A. Ouchi, Y. Hamuro, ''Using Social Networking Services in Education to Support Learning'', The International Symposium on Business and Social Sciences, Hawaii, USA, 6-8 August 2019. pp.226-234.
T. Nakahara, “Use of Personal Color and Purchasing Patterns for Distinguishing Fashion Sensitivity”, In: Meiselwitz G. (eds) Social Computing and Social Media. Technologies and Analytics. SCSM 2018. Lecture Notes in Computer Science, vol 10914. Springer, Cham, https://doi.org/10.1007/978-3-319-91485-5_20. ISBN: 978-3-319-91484-8, 2018.
T. Nakahara, T. Uno, and Y. Hamuro, “Prediction Model Using Micro-clustering”, Knowledge-Based and Intelligent Information & Engineering Systems 18th Annual Conference, KES-2014 Gdynia, Poland, September 2014 Proceedings, DOI: 10.1016/j.procs.2014.08.231, Volume 35, 2014, pp.1488–1494, 2014.
T. Nakahara, Y. Hamuro, “Detecting topics from Twitter posts during TV program viewing”, MoDAT in conjunction with IEEE ICDM 2013 in Dallas, Texas. DOI: 10.1109/ICDMW.2013.48. December 7, 2013.
T.Nakahara, T. Kin, K. Yada, “Analysis of the impact of media contact on the purchase process”, SIAM International Workshop on Data Mining for Marketing (DMM2011) held in conjunction with the 2011 SIAM International Conference on Data Mining, pp.55-61. Mesa, Arizona USA, 28-30 April 2011.
T. Nakahra, H. Morita, Y. Hamuro, “Recommender System for Meal Menus Using a Potential Model”, The Eleventh IASTED International Conference on Artificial Intelligence and Applications, February 14-16, 2011. Innsbruck, Austria.
T. Nakahara, H. Morita, “Collaborative Filtering by Using a Graph Partitioning Method on Binary Data”, Asia Pacific Conference on Information Management (APCIM2009), 27-29 March 2009, Beijing, China, 2009.
T. Nakahara, H. Morita, T. Yoneda, “Discovery of Web Usage Patterns Using Graph Reduction and MOEA”, The 7th International Conference on Optimization: Techniques and Applications (ICOTA7), 12-15 December 2007, Kobe, Japan, 2007.
T. Nakahara, H. Morita, “A Recommendation System Using a Graph Partitioning Method”, Eighth International Conference on Operations and Quantitative Management (ICOQM08), 17-20 October 2007, Bangkok, Thailand, 2007.
H. Morita, T. Ishigaki, T. Nakahara, “A Study on Optimal Pricing Strategy for Retail Stores”, Eighth International Conference on Operations and Quantitative Management (ICOQM08), 17-20 October 2007, Bangkok, Thailand, 2007.
H. Morita, T. Nakahara, “Pattern Mining for Historical Data Analysis by using MOEA”, The 7th International Conference devoted to Multi-Objective Programming and Goal Programming (MOPGP2006), June 12-14, 2006, Loire Valley (old city hall of Tours), France.
T.Nakahara, “Extraction of Customer Potential Value using shopping data”, IABD 2017 , The 3rd International Workshop on Innovative Algorithms for Big Data, 30 November, 2017.